Abstract:Cortical folding exhibits substantial inter-individual variability while preserving stable anatomical landmarks that enable fine-scale characterization of cortical organization. Among these, the three-hinge gyrus (3HG) serves as a key folding primitive, showing consistent topology yet meaningful variations in morphology, connectivity, and function. Existing landmark-based methods typically model each 3HG independently, ignoring that 3HGs form higher-order folding communities that capture mesoscale structure. This simplification weakens anatomical representation and makes one-to-one matching sensitive to positional variability and noise. We propose a spectral graph representation learning framework that models community-level folding units rather than isolated landmarks. Each 3HG is encoded using a dual-profile representation combining surface topology and structural connectivity. Subject-specific spectral clustering identifies coherent folding communities, followed by topological refinement to preserve anatomical continuity. For cross-subject correspondence, we introduce Joint Morphological-Geometric Matching, jointly optimizing geometric and morphometric similarity. Across over 1000 Human Connectome Project subjects, the resulting communities show reduced morphometric variance, stronger modular organization, improved hemispheric consistency, and superior alignment compared with atlas-based and landmark-based or embedding-based baselines. These findings demonstrate that community-level modeling provides a robust and anatomically grounded framework for individualized cortical characterization and reliable cross-subject correspondence.
Abstract:Cultural backgrounds shape individuals' perspectives and approaches to problem-solving. Since the emergence of GPT-1 in 2018, large language models (LLMs) have undergone rapid development. To date, the world's ten leading LLM developers are primarily based in China and the United States. To examine whether LLMs released by Chinese and U.S. developers exhibit cultural differences in Chinese-language settings, we evaluate their performance on questions about Chinese culture. This study adopts a direct-questioning paradigm to evaluate models such as GPT-5.1, DeepSeek-V3.2, Qwen3-Max, and Gemini2.5Pro. We assess their understanding of traditional Chinese culture, including history, literature, poetry, and related domains. Comparative analyses between LLMs developed in China and the U.S. indicate that Chinese models generally outperform their U.S. counterparts on these tasks. Among U.S.-developed models, Gemini 2.5Pro and GPT-5.1 achieve relatively higher accuracy. The observed performance differences may potentially arise from variations in training data distribution, localization strategies, and the degree of emphasis on Chinese cultural content during model development.
Abstract:While Large Language Models (LLMs) excel at generalized reasoning, standard retrieval-augmented approaches fail to address the disconnected nature of long-term agentic memory. To bridge this gap, we introduce Synapse (Synergistic Associative Processing Semantic Encoding), a unified memory architecture that transcends static vector similarity. Drawing from cognitive science, Synapse models memory as a dynamic graph where relevance emerges from spreading activation rather than pre-computed links. By integrating lateral inhibition and temporal decay, the system dynamically highlights relevant sub-graphs while filtering interference. We implement a Triple Hybrid Retrieval strategy that fuses geometric embeddings with activation-based graph traversal. Comprehensive evaluations on the LoCoMo benchmark show that Synapse significantly outperforms state-of-the-art methods in complex temporal and multi-hop reasoning tasks, offering a robust solution to the "Contextual Tunneling" problem. Our code and data will be made publicly available upon acceptance.
Abstract:Digital twins, as precise digital representations of physical systems, have evolved from passive simulation tools into intelligent and autonomous entities through the integration of artificial intelligence technologies. This paper presents a unified four-stage framework that systematically characterizes AI integration across the digital twin lifecycle, spanning modeling, mirroring, intervention, and autonomous management. By synthesizing existing technologies and practices, we distill a unified four-stage framework that systematically characterizes how AI methodologies are embedded across the digital twin lifecycle: (1) modeling the physical twin through physics-based and physics-informed AI approaches, (2) mirroring the physical system into a digital twin with real-time synchronization, (3) intervening in the physical twin through predictive modeling, anomaly detection, and optimization strategies, and (4) achieving autonomous management through large language models, foundation models, and intelligent agents. We analyze the synergy between physics-based modeling and data-driven learning, highlighting the shift from traditional numerical solvers to physics-informed and foundation models for physical systems. Furthermore, we examine how generative AI technologies, including large language models and generative world models, transform digital twins into proactive and self-improving cognitive systems capable of reasoning, communication, and creative scenario generation. Through a cross-domain review spanning eleven application domains, including healthcare, aerospace, smart manufacturing, robotics, and smart cities, we identify common challenges related to scalability, explainability, and trustworthiness, and outline directions for responsible AI-driven digital twin systems.
Abstract:Understanding neural responses to visual stimuli remains challenging due to the inherent complexity of brain representations and the modality gap between neural data and visual inputs. Existing methods, mainly based on reducing neural decoding to generation tasks or simple correlations, fail to reflect the hierarchical and temporal processes of visual processing in the brain. To address these limitations, we present NeuroAlign, a novel framework for fine-grained fMRI-video alignment inspired by the hierarchical organization of the human visual system. Our framework implements a two-stage mechanism that mirrors biological visual pathways: global semantic understanding through Neural-Temporal Contrastive Learning (NTCL) and fine-grained pattern matching through enhanced vector quantization. NTCL explicitly models temporal dynamics through bidirectional prediction between modalities, while our DynaSyncMM-EMA approach enables dynamic multi-modal fusion with adaptive weighting. Experiments demonstrate that NeuroAlign significantly outperforms existing methods in cross-modal retrieval tasks, establishing a new paradigm for understanding visual cognitive mechanisms.
Abstract:Medical images exhibit latent anatomical groupings, such as organs, tissues, and pathological regions, that standard Vision Transformers (ViTs) fail to exploit. While recent work like SBM-Transformer attempts to incorporate such structures through stochastic binary masking, they suffer from non-differentiability, training instability, and the inability to model complex community structure. We present DCMM-Transformer, a novel ViT architecture for medical image analysis that incorporates a Degree-Corrected Mixed-Membership (DCMM) model as an additive bias in self-attention. Unlike prior approaches that rely on multiplicative masking and binary sampling, our method introduces community structure and degree heterogeneity in a fully differentiable and interpretable manner. Comprehensive experiments across diverse medical imaging datasets, including brain, chest, breast, and ocular modalities, demonstrate the superior performance and generalizability of the proposed approach. Furthermore, the learned group structure and structured attention modulation substantially enhance interpretability by yielding attention maps that are anatomically meaningful and semantically coherent.
Abstract:Decoding images from fMRI often involves mapping brain activity to CLIP's final semantic layer. To capture finer visual details, many approaches add a parameter-intensive VAE-based pipeline. However, these approaches overlook rich object information within CLIP's intermediate layers and contradicts the brain's functionally hierarchical. We introduce BrainMCLIP, which pioneers a parameter-efficient, multi-layer fusion approach guided by human visual system's functional hierarchy, eliminating the need for such a separate VAE pathway. BrainMCLIP aligns fMRI signals from functionally distinct visual areas (low-/high-level) to corresponding intermediate and final CLIP layers, respecting functional hierarchy. We further introduce a Cross-Reconstruction strategy and a novel multi-granularity loss. Results show BrainMCLIP achieves highly competitive performance, particularly excelling on high-level semantic metrics where it matches or surpasses SOTA(state-of-the-art) methods, including those using VAE pipelines. Crucially, it achieves this with substantially fewer parameters, demonstrating a reduction of 71.7\%(Table.\ref{tab:compare_clip_vae}) compared to top VAE-based SOTA methods, by avoiding the VAE pathway. By leveraging intermediate CLIP features, it effectively captures visual details often missed by CLIP-only approaches, striking a compelling balance between semantic accuracy and detail fidelity without requiring a separate VAE pipeline.
Abstract:Although recent advances in quantum machine learning (QML) offer significant potential for enhancing generative models, particularly in molecular design, a large array of classical approaches still face challenges in achieving high fidelity and validity. In particular, the integration of QML with sequence-based tasks, such as Simplified Molecular Input Line Entry System (SMILES) string reconstruction, remains underexplored and usually suffers from fidelity degradation. In this work, we propose a hybrid quantum-classical architecture for SMILES reconstruction that integrates quantum encoding with classical sequence modeling to improve quantum fidelity and classical similarity. Our approach achieves a quantum fidelity of approximately 84% and a classical reconstruction similarity of 60%, surpassing existing quantum baselines. Our work lays a promising foundation for future QML applications, striking a balance between expressive quantum representations and classical sequence models and catalyzing broader research on quantum-aware sequence models for molecular and drug discovery.
Abstract:Plant roots typically exhibit a highly complex and dense architecture, incorporating numerous slender lateral roots and branches, which significantly hinders the precise capture and modeling of the entire root system. Additionally, roots often lack sufficient texture and color information, making it difficult to identify and track root traits using visual methods. Previous research on roots has been largely confined to 2D studies; however, exploring the 3D architecture of roots is crucial in botany. Since roots grow in real 3D space, 3D phenotypic information is more critical for studying genetic traits and their impact on root development. We have introduced a 3D root skeleton extraction method that efficiently derives the 3D architecture of plant roots from a few images. This method includes the detection and matching of lateral roots, triangulation to extract the skeletal structure of lateral roots, and the integration of lateral and primary roots. We developed a highly complex root dataset and tested our method on it. The extracted 3D root skeletons showed considerable similarity to the ground truth, validating the effectiveness of the model. This method can play a significant role in automated breeding robots. Through precise 3D root structure analysis, breeding robots can better identify plant phenotypic traits, especially root structure and growth patterns, helping practitioners select seeds with superior root systems. This automated approach not only improves breeding efficiency but also reduces manual intervention, making the breeding process more intelligent and efficient, thus advancing modern agriculture.
Abstract:Endoscopic video generation is crucial for advancing medical imaging and enhancing diagnostic capabilities. However, prior efforts in this field have either focused on static images, lacking the dynamic context required for practical applications, or have relied on unconditional generation that fails to provide meaningful references for clinicians. Therefore, in this paper, we propose the first conditional endoscopic video generation framework, namely EndoGen. Specifically, we build an autoregressive model with a tailored Spatiotemporal Grid-Frame Patterning (SGP) strategy. It reformulates the learning of generating multiple frames as a grid-based image generation pattern, which effectively capitalizes the inherent global dependency modeling capabilities of autoregressive architectures. Furthermore, we propose a Semantic-Aware Token Masking (SAT) mechanism, which enhances the model's ability to produce rich and diverse content by selectively focusing on semantically meaningful regions during the generation process. Through extensive experiments, we demonstrate the effectiveness of our framework in generating high-quality, conditionally guided endoscopic content, and improves the performance of downstream task of polyp segmentation. Code released at https://www.github.com/CUHK-AIM-Group/EndoGen.